线性代数和高数哪个难

高数比较难 。高等数学包含线性代数 。高等数学是由微积分学 , 较深入的代数学、几何学以及它们之间的交叉内容所形成的一门基础学科 。主要内容包括:数列、极限、微积分、空间解析几何与线性代数、级数、常微分方程 。
高数的特点
作为一门基础科学 , 高等数学有其固有的特点 , 这就是高度的抽象性、严密的逻辑性和广泛的应用性 。抽象性和计算性是数学最基本、最显著的特点 。
有了高度抽象和统一 , 我们才能深入地揭示其本质规律 , 才能使之得到更广泛的应用 。严密的逻辑性是指在数学理论的归纳和整理中 , 无论是概念和表述 , 还是判断和推理 , 都要运用逻辑的规则 , 遵循思维的规律 。
【线性代数和高数哪个难】所以说 , 数学也是一种思想方法 , 学习数学的过程就是思维训练的过程 。人类社会的进步 , 与数学这门科学的广泛应用是分不开的 。尤其是到了现代 , 电子计算机的出现和普及使得数学的应用领域更加拓宽 , 现代数学正成为科技发展的强大动力 , 同时也广泛和深入地渗透到了社会科学领域 。
线性代数的意义
线性代数在数学、物理学和技术学科中有各种重要应用 , 因而它在各种代数分支中占居首要地位 。
在计算机广泛应用的今天 , 计算机图形学、计算机辅助设计、密码学、虚拟现实等技术无不以线性代数为其理论和算法基础的一部分 。
线性代数所体现的几何观念与代数方法之间的联系 , 从具体概念抽象出来的公理化方法以及严谨的逻辑推证、巧妙的归纳综合等 , 对于强化人们的数学训练 , 增益科学智能是非常有用的 。

    推荐阅读