爱刨根知识网

北师大高中数学必修2教案

注重函数思想、等价转化、分类讨论等思想的渗透,提高解题能力 。一起看看北师大高中数学必修2教案!欢迎查阅!
北师大高中数学必修2教案1
【北师大高中数学必修2教案】教学目标:①掌握对数函数的性质 。
②应用对数函数的性质可以解决:对数的大小比较,求复
合函数的定义域、值 域及单调性 。
③ 注重函数思想、等价转化、分类讨论等思想的渗透,提高
解题能力 。
教学重点与难点:对数函数的性质的应用 。
教学过程设计:
⒈复习提问:对数函数的概念及性质 。
⒉开始正课
1 比较数的大小
例 1 比较下列各组数的大小 。
⑴loga5.1 ,loga5.9 (a>0,a≠1)
⑵log0.50.6 ,logЛ0.5 ,lnЛ
师:请同学们观察一下⑴中这两个对数有何特征?
生:这两个对数底相等 。
师:那么对于两个底相等的对数如何比大小?
生:可构造一个以a为底的对数函数,用对数函数的单调性比大小 。
师:对,请叙述一下这道题的解题过程 。
生:对数函数的单调性取决于底的大小:当0
调递减,所以loga5.1>loga5.9 ;当a>1时,函数y=logax单调递
增,所以loga5.1
板书:
解:Ⅰ)当0
∵5.1<5.9 ∴loga5.1>loga5.9
Ⅱ)当a>1时,函数y=logax在(0,+∞)上是增函数,
∵5.1<5.9 ∴loga5.1
师:请同学们观察一下⑵中这三个对数有何特征?
生:这三个对数底、真数都不相等 。
师:那么对于这三个对数如何比大小?
生:找“中间量”,log0.50.6>0,lnЛ>0,logЛ0.5<0;lnЛ>1,
log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ 。
板书:略 。
师:比较对数值的大小常用方法:①构造对数函数,直接利用对数函
数 的单调性比大小,②借用“中间量”间接比大小,③利用对数
函数图象的位置关系来比大小 。
2 函数的定义域, 值 域及单调性 。
北师大高中数学必修2教案2
重点难点教学:
1.正确理解映射的概念;
2.函数相等的两个条件;
3.求函数的定义域和值域 。
一.教学过程:
1. 使学生熟练掌握函数的概念和映射的定义;
2. 使学生能够根据已知条件求出函数的定义域和值域; 3. 使学生掌握函数的三种表示方法 。
二.教学内容: 1.函数的定义
设A、B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有确定的数()fx和它对应,那么称:fAB?为从集合A到集合B的一个函数(function),记作:
(),yfA
其中,x叫自变量,x的取值范围A叫作定义域(domain),与x的值对应的y值叫函数值,函数值的集合{()|}fA?叫值域(range) 。显然,值域是集合B的子集 。
注意:
① “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;
②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x. 2.构成函数的三要素 定义域、对应关系和值域 。3、映射的定义
设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意
一个元素x,在集合B中都有确定的元素y与之对应,那么就称对应f:A→B为从 集合A到集合B的一个映射 。
4. 区间及写法:
设a、b是两个实数,且a
(1) 满足不等式axb??的实数x的集合叫做闭区间,表示为[a,b];
(2) 满足不等式axb??的实数x的集合叫做开区间,表示为(a,b);
5.函数的三种表示方法 ①解析法 ②列表法 ③图像法
北师大高中数学必修2教案3
高二数学教学这一年来我认真钻研数学中的每一个知识点,精心设计每一节课,虚心向教学经验丰富的教师请教,同时用心主动的学习老教师的实际教学方法,与此同时,我努力做好教学的各个环节,做好学生的课后辅导工作,注意学生的心理素质的提高 。尽管我在教学中留意谨慎,但还是留下了一些遗憾 。